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S calability is the major bottleneck preventing
blockchains from reaching industrial capac-
ity. Systems tackling themost promising scal-

ing solutions thus far, blockchain sharding, have
produced progress in parallelizing transaction pro-
cessing but have not achieved full sharding needed
for total scalability. MultiVAC was completely de-
signed to serve as a solution: the world’s first fast,
efficient, and all-dimensional sharded blockchain
designed for total scalability, performing sharding
parallelization not only for computation but also
transmission and storage. In this paper, we present
an overview of MultiVAC’s sharding and storage so-
lution. MultiVAC uses the Proof of Stake mecha-
nism to prevent Sybil attacks and uses Verifiable
Random Functions to divide the network into frag-
ments called shards. Each shard processes transac-
tions in parallel. MultiVAC provides an elegant dis-
tributed storage solution for the blockchain, pro-
ducing a robust architecture that divides storage
and transmission across shards. In this fashion,
MultiVAC provides a blockchain throughput that
can serve the real economy while maintaining
blockchain’s core values of decentralization, equal-
ity, and security.

1 Introduction

Since the publication of the Bitcoin White Paper [1] by
Satoshi Nakamoto in 2008, Blockchain technology has
taken the world by storm. As exemplified by Bitcoin
and Ethereum [2], it has been subject to both scrutiny
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and progress and today finds commercial usage in
fields as diverse as cross-border settlement, supply-
chain management, entertainment, and investment.
However, the technology is at a major bottleneck.

Low levels of transactions per second (TPS) saddle
blockchain systems, creating constraints on their real-
world use. Bitcoin’s throughput is on average only 4-5
transactions per second (tps) and Ethereum’s is 10 tps,
causing rampant congestion and backlog for today’s
best known networks. All this while the dominant
provider of payment solutions, VISA, easily processes
2000 tps on average and 45,000 tps at maximum ca-
pacity. The current rate of blockchain development is
nowhere near capable of servicing millions of transac-
tions that businesses conduct on a routine basis. The
entire industry is cognizant that speed and scalability
are the factors determining whether or not the use of
blockchain will become ubiquitous in modern society.
MultiVAC believes that in the coming decade,

blockchain will be pervasively employed for any type
of transactions imaginable. To obtain this ease of use,
the blockchain community needs to overcome numer-
ous scalability problems, a challenge we have accepted.
Academia and the industry have provided numerous
proposals to scale blockchains, and we roughly summa-
rize them below. They can be categorized into three
camps: partial centralization, off-chain scaling, and
on-chain scaling.

1.1 Blockchain Scaling Approaches

• Partial centralization is an approach that allows
the bulk of consensus processing in a blockchain
system to be handled by a small number of high-
powered nodes called supernodes. This approach
is exemplified by EOS [3], IOST [4], and the root
chain system of Quarkchain [5]. In a traditional
blockchain, the network’s processing capacity is
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bottlenecked by the processing capacities of indi-
vidual nodes. Partial centralization gives network
stewardship over to nodes that fulfill a particu-
larly high processing capacity, thus bringing up
the network’s total throughput. Such a system is
fast but cuts out ordinary users, creating a semi-
centralized system that loses blockchain’s original
value proposition: decentralization.

• Off-chain scaling technologies can be roughly
divided into side-chain and state channel ap-
proaches to scalability. These approaches attempt
to side-step a blockchain’s performance bottleneck
by processing most transactions outside of the
main blockchain. Typical side-chain schemes like
Cosmos [6] and Aelf [6] process transactions by
interfacing the main chain with the side chain,
increasing throughout by and order of magni-
tude. They however also create even more secu-
rity and performance risks, including cross-chain
trust limitations and bottlenecks arising from over-
burdened main chains. State channel schemes
are represented by Plasma [8] and the Lightning
Network [9] provide specialized transaction chan-
nels between users that are based outside of the
main blockchain, similarly allowing throughput
to scale. They, however, critically require trust re-
quirements between the on- and off-chain links
which carry high security risks, reintroducing the
central point of failure that blockchain systems
were built to avoid.

• On-chain scaling technologies roughly include
the use of directed acyclic graphs (DAG) and
blockchain sharding. Both systems try to change
the structure of the blockchain itself to achieve
scalability. Directed Acyclic Graphs (DAGs) are
represented by Iota [10], Hash Graph [11],
Vite [12] and Conflux [13] and is an alternate
graph-based data structure which allows blocks
to be added asynchronously. DAGs show promise
and can run extremely quickly in the laboratory
but have proven difficult to apply commercially
because they require a huge number of transac-
tion broadcasts which causes a network storm
that makes them unwieldy in an open environ-
ments. Sharding is represented by Zilliqa [14],
Quarkchain [5] and Ethereum [15] and is a
method of breaking up the processing of transac-
tions on the blockchain into sub-networks called
shards. Sharding is a commonly used scalabil-
ity mechanism in distributed databases and can
also significantly improve throughput. It has seen
significant accomplishment in public arena, with
Zilliqa, for example, having stably run over 2000
tps [14] on its testnet. At the same time, all of
the most well-known sharding mechanism only
perform partial sharding: They split up the pro-
cessing labor but still impose the full burden of
the network’s storage and transmission needs on
every node. This inevitably only increases the

blockchain’s bottleneck.

1.2 MultiVAC Design Principles
MultiVAC was designed with the following question in
mind: “Which features of a blockchain are necessary
for it to scale to be used on an industrial scale and serve
the real economy?” Several conclusions are apparent.
An ideal blockchain scalability architecture should be

decentralized at its core, presicely because blockchain
technology is touted for its decentralized nature.
Blockchain technology was designed to provide a de-
centralized computing platform to avoid central points
of failure, at the cost of requiring a consensus algorithm
to finalize outcomes. Reverting to a semi-centralized
system would not be a step forward towards a sys-
tem robust enough to be at the forefront of global
commerce. Moreover, an ideal scalability architecture
should consist of fundamental upgrades to blockchain
at the base layer. Off-chain approaches are thus not
ideal as they function more like patches which are
sometimes helpful but often bring their own security
risks. For this reason, MultiVAC improves blockchain
architecture from the bottom-up, using the most de-
pendable of the scaling solutions thus far, blockchain
sharding.
Sharding is the parallelization of a blockchain’s con-

sensus process.This is similar to how large-scale pro-
cessing of corporate data today is mostly conducted
by multiple servers in parallel. Conducting blockchain
operations in parallel is seen as essential to making
them capable of handling the computational demand
of large corporations. Sharding is the only practical
and manageable, and base-layer method to scale a
blockchain to industrial capacity while still maintain-
ing a decentralized network with open participation.
For this reason, scalability efforts of the best known
blockchain networks including Ethereum have been
focused on blockchain sharding. There are, however,
inherent difficulties of designing sharding over an origi-
nally non-sharded system. MultiVAC has the advantage
of being a fully sharded system from inception.
Our sharding approach differs from and improves

on almost all of the sharding methods existing to date.
Central to MultiVAC’s sharding design is the important
observation that computers do more than just compute
data: a large volume of their work is also in transmit-
ting and storing it. Thus, we designed MultiVAC for
all-dimensional sharding at the core: sharding not only
for computation but also for data storage and trans-
mission, the first blockchain system to design for all
three. With a fully sharded architecture, MultiVAC
is the first blockchain able to practically and robustly
handle industrial-level demand.
We summarize MultiVAC’s core technological advan-

tages described in the below paper:

1. Transaction sharding alone is not sufficient to solve
blockchain’s scalability problem. We are the first
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blockchain system providing sharding for transac-
tions, transmission and storage.

2. Fairness, reliability, and security, and are essential
to blockchain systems. We utilize a fair resharding
technology based on Verifiable Random Functions
(VRF) which ensures the reliability and security
of every shard.

3. Cross-shard communication is a difficult problem
that must be addressed by every sharding system.
We design a compact UTXO ledger and decentral-
ized Merkle Root data structure which enables
asynchronous secure cross-shard communication,
trusted third-party data storage, and trusted data
verification in a sharded data environment.

2 MultiVAC Protocol at a Glance
We first present an overview of how MultiVAC achieves
sharding for processing, storage and transmission. We
use the following legends in the diagrams :

Figure 1: Legend for Figure 2 and Figure 3

2.1 Foundations at a Glance
Nodes Nodes are the different types of machines con-
nected to the network. MultiVAC uses three types of
nodes: Light Nodes, Miner Nodes and Storage Nodes.
Light nodes or clients are nodes which submit new
transactions and perform no processing. They function
like users in the system who own accounts and make
transactions. Miner nodes are nodes running the con-
sensus algorithm and are reassigned to different shards
or fragments of the network every couple of minutes.
They are the bookkeepers in the system with very low
hardware barriers-of-entry, and are incentivized for
running consensus. Storage nodes are nodes assigned
to particular shards that are responsible for storing and
serving up transactions. They function like utilities sim-
ilar to the internet infrastructure on which the network
is run, providing services to miners that allow them
to perform their tasks more quickly and efficiently. A
large number of each node type make up the MultiVAC
network.

Verifiable Random Function MultiVAC uses Verifi-
able Random Functions (VRF) to allocate miners to
shards, and to further select subgroups of sharded
miners to complete bookkeeping tasks. A VRF is a
pseudorandom function that produces a trusted source
of randomness, that is, a function that both acts as
a random number generator for a node in a trustless

network and also produces a proof statement allowing
other nodes to verify the generated number is legiti-
mately random and not manipulated in any way. The
VRF has two other features; its unpredictablility ahead
of time and unbiasedness over time. The VRF requires
other miners to verify that the node assignment is fair
before assigning miners to tasks.

Node Setup All nodes are connected over a semi-
synchronous network such that almost all miners can
communicate with each other within a certain small
time limit. Each node has a cryptographic public key
and private key pair. The private key is only known
by the node while the public key is known publicly.
The node may sign computations with his private key
which is then verifiable by all other nodes using his
public key.

2.2 Dynamic Sharding

MultiVAC utilizes a dynamic sharding mechanism,
where miners are allocated to shards which are dynam-
ically changed every couple of minutes. New miners
can join a shard when it is periodically re-allocated
and miners are not limited to participating in just one
shard. The entire process is described in Figure 2.

Figure 2: Dynamic Miner Sharding Flow Diagram

MultiVAC is a Proof of Stake system. In a Proof of
Stake system, miners have to prove ownership of a

Page 3 of 17



MultiVAC Sharding Yellowpaper
The All-Dimensional Sharded Blockchain

certain amount of tokens (stake) to be able to partici-
pate in consensus. For more details on why we choose
a Proof of Stake rather than a Proof of Work system,
please refer to Appendix 1. In MultiVAC, we enforce
Proof-of-Stake by requiring each miner to lock up a
deposit before a shard can be joined.
After locking in the deposit, the miner waits until

one of the shards initiates re-sharding, which takes a
few minutes. MultiVAC runs shards in an asynchronous
manner, so miners may be selected for multiple shards
proportional to their deposit size. The miner runs his
VRF on his private key and the shard’s VRF seed to
determine whether or not he can enter the shard. A
miner node that has not been selected for inclusion by
a shard waits until it is included.
When shards are overburdened, MultiVAC supports

incremental shard splitting to increase the number of
shards. When a shard splitting is triggered, an over-
burdened shard is split into two shards. Light nodes
belonging to the original shard are allocated to the new
shard according to their addresses, and storage nodes
are given some leeway to choose between the old and
new shards. The new shards then are both allocated
with miners by the re-sharding algorithm.

2.3 Transaction Confirmation, Consensus,
and Storage

In MultiVAC, storage nodes store all transactions. Mul-
tiVAC adapts a variation of the UTXO model used in
Bitcoin in which the input of every transaction is the
output of a previously confirmed transaction. The sys-
tem traces outputs and their states (whether or not the
transaction has already been spent) to prevent double
spending. MultiVAC stores outputs and their states in
the Merkle Tree data structure.
When a new transaction is produced and signed by

a light node, it is submitted to the storage nodes in the
corresponding shard. The storage node will broadcast
the transactions to all the shard’s current miners, and
enabling them to receive rewards. The blocks thus
reach all the shard’s current miners.
Each shard runs a fast Byzantine Consensus algo-

rithm to reach blockchain consensus. Miners are se-
lected for different consensus tasks by the VRF, the first
of which is block proposal. All miners selected for block
proposal include their pending transactions on the new
block. The block is further processed and voted on by
miners selected by the VRF until consensus is reached.
After achieving consensus on the block, it is broad-

cast to all storage nodes in the shard, which is stored
on their hard disks. The corresponding block header
is broadcasted to all miners in the network but is kept
outside of the shard for space efficiency. At this point
the transaction is confirmed.
The whole process is briefly illustrated in Figure 3.

2.4 Formal Definitions

We now provide definitions for the MultiVAC system in
detail below.

2.4.1 Transactions

• Transaction: A message submitted from one
client to another representing a movement of to-
kens from one account to another account. Each
transaction is a block of data that includes a num-
ber of inputs to spend, a number of outputs to
produce, and the id of the transaction type.

• Input: An input is a gained unit of money (a out-
put) which must be referenced to be spent. Inputs
contain a reference to the output of a previous
transaction and a script signature unlocking the
input.

• Output: Outputs are produced by transactions
occurring in MultiVAC. They contain a number
denoting the value of the output and a public key
script corresponding to the receiver’s address.

• Output State: An output state is a binary (0-1)
flag which determines if the output has been al-
ready used as an input to a transaction.

• Transaction Type: The transaction type is a code
which may be one of three types: normal transac-
tion, deposit transaction or withdraw transaction.

– N, Normal Transaction: a regular transac-
tion of funds from one account to another
account.

– D, Deposit Transaction: a transaction used
to place a deposit. The payer and payee must
be the same account, and the token included
in the deposit transaction can only be used
in a withdraw transaction.

– W, Withdraw Transaction: a transaction
withdrawing the deposit and unlocking it for
future use.

• Output Message: The output message is a mes-
sage submitted from one shard’s storage nodes to
another which allows the second shard to recon-
struct outputs deposited to the second shard by
the first shard.

2.4.2 Nodes and Clients

• Miner Node M : Also known as users, miner
nodes run MultiVAC’s Byzantine consensus and
receive rewards when selected as block proposer.
Any user running MultiVAC software is eligible to
be selected as miner as long as he or she first locks
up a stake deposit. Miners are required to listen to
all messages from their own shard and block head-
ers from all shards. Miners keep track of block
headers, Merkle roots, and some partial Merkle
tree structure from all shards in order to confirm
the validity of pending transactions. Finally, miner
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Figure 3: Block Generation Flow Diagram

nodes maintain a pending transaction pool to ag-
gregate transactions for potential block proposal.
The hardware requirements to be a miner node
are quite low and any modern personal computer
would suffice. M denotes the set of all miner
nodes.

• Storage Node S : Storage nodes are assigned to
particular shards and are responsible for storing
all of that shard’s historical transactions. Storage
nodes are designed to respond to and serve re-
quests from miner nodes and are incentivized for
providing storage; they have higher hardware re-
quirements than miner nodes. Storage nodes are
only providers of services to the network and do
not participate in consensus and thus do not have
decisions making “power” in the network; in par-
ticular they do not pose a centralization risk. S
denotes the set of all storage nodes.

• Light Node C : Light nodes or clients are nodes
which submit new transactions. They are not
required to store any block information except
records of their own transactions. Light nodes
have minimum hardware requirements, allowing
a common mobile device to serve as a light node.
C denotes the set of all light nodes.

2.4.3 Data Storage

• Merkle Tree: AMerkle tree is a binary tree shaped
data structure for data storage. Every leaf node
represents a data block and every non-leaf node
up to the root is the cryptographic hash of its child
nodes. This hierarchy of hashes allows for ex-
tremely fast and secure verification of the contents
stored in the Merkle Tree, for example, the data
of transactions representing a certain amount of
monetary value.

• Merkle Root: A Merkle root is the root (top node)

of a Merkle tree. Users with the Merkle root of
a Merkle tree can quickly verify the existence of
any content in the Merkle tree by checking the
content’s Merkle path.

• Merkle Path: A Merkle path is a path from a leaf
of the Merkle tree to its root node, allowing for
secure verification of the leaf node’s content.

• Main Merkle Tree: The Main Merkle Tree is the
name of MultiVAC’s primary Merkle Tree data
structure used to store transactions in storage
nodes. The leaves of the Main Merkle Tree com-
prise all historical outputs and their output states
aggregated from all the shards.

• Block Merkle Tree: A Block Merkle Tree is a
Merkle tree in each block that stores the trans-
actions outputs recorded in that block. The Block
Merkle Trees are appended to the leaves of the
Main Merkle Tree as blocks get confirmed.

• Top Main Merkle Tree: The Top Main Merkle
Tree is the top section of the Main Merkle Tree, ex-
cluding the leaves which are Block Merkle Trees.
The leaves of the Top Main Merkle Tree are in-
stead the Merkle Roots of the corresponding Block
Merkle Trees.

3 MultiVAC Sharding in Detail

Sharding is central to the design of MultiVAC. Using a
strategy similar to distributed computing used by all
major modern corporations to process huge volumes
of data, MultiVAC separates nodes into network frag-
ments called shards in order to perform parallel pro-
cessing of transactions. This allows the network to scale
and handle the high-volume business computations re-
quired by the modern economy. As a fundamental and
integral part of MultiVAC, sharding is run automatically
by the MultiVAC protocol. New shards are allocated if
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the network burden on any existing shard becomes too
great, and miner and storage nodes assigned to a new
shard can immediately start constructing new blocks.
A shard Si,r is a subset of the MultiVAC network,

(Ci,r, (Bi,h)1≤h≤r, (Hi,h)1≤h≤r,MTi,r,Mi,r,Ci,r,Si,r),

where i is the shard index, r is the current height of
the shard’s internal blockchain, Ci,r is the consensus
algorithm running within the shard, Bi,h is the block
of shard i at height h, Hi,h is the header of Bi,h,MTi,r
is the current Main Merkle Tree maintained by the
shard, and Mi,r ⊆ M , Ci,r ⊆ C and Si,r ⊆ S are
the current subsets of miner nodes, client nodes and
storage nodes belonging to the shard, respectively.
Each shard maintains a separate and distinct in-

shard blockchain comprising a log of transactions.
Clients are separated into different shards for service
based on their public keys, with transactions assigned
to the shard of the payer’s public key. Each shard is pe-
riodically reassigned a group of randomly selected min-
ers responsible for generating new blocks and running
Byzantine consensus. Each shard also has a number
of storage nodes which maintain records of all blocks
generated by the shard and update all of the shard’s
assigned output states.

3.1 Miner Selection

MultiVAC is a shard-based blockchain system where
miners perform consensus as part of network fragments
called shards. The central question here is the selection
process of the miners who would perform such tasks.
It is apparent that a fair selection mechanism must be
random and not biased towards any subset of miners
over others. A naive random selection method is not
however sufficient for the task. In the absence of a
robust selection mechanism, malicious miners can per-
form Sybil attacks by passing off as multiple users so as
to dominate the network. A classic random selection
mechanism that prevents Sybil attacks is Proof of Work
(PoW), which require miners to solve computational
puzzles in order to contribute to consensus. However,
as discussed many times in the blockchain literature,
Proof of Work is an extremely energy-inefficient and
wasteful mechanism.
MultiVAC instead uses a Proof of Stake (PoS) based

algorithm which avoids wasteful energy expenditures
while ensuring an equally high level of security. Each
miner has certain amount of MultiVAC tokens that he
or she can lock up in deposit which would correspond
to his or her current stake. Together with a random
seed produced by the shard and a selection likeliness
proportional to the stake, a miner calculates a random
number with the VRF to determine whether or not he
is allocated to a shard. Miners may be selected for
inclusion in more than one shard.

Miner Deposits MultiVAC requires each miner to
place a deposit to be a potential candidate for shard
inclusion. To place a deposit, a miner submits a special
deposit transaction to a storage node and waits until
the transaction is confirmed in a block. The deposit
transaction has a special output, the deposit output,
which cannot be spent by the user until it is unlocked
by a withdraw transaction.
The deposit transaction consists of the following:

• Input: one or several outputs belonging to the
user;

• Output: an output from the user to himself;
• Transaction Type: “D” for deposit transaction.

After the deposit transaction is confirmed, it is
recorded in the block header. The miner broadcasts
a heartbeat message to the whole network to signal
that it is live, and is then eligible for selection into a
shard. The miner then waits for a shard to perform
re-sharding, the process of which is described below,
and checks if it has been allocated to a shard by the
VRF. Upon allocation, other miners can verify that the
miner by verifying his random selection number as well
as his deposit-confirmation message.
The miner’s heartbeat message is valid for a period

of around 24 hours, to avoid the allocation of inac-
tive miners. After the heartbeat expires, the miner is
required to re-send another heartbeat.

Withdraw Deposit The output value of a deposit is
locked and not spendable as an input of a further trans-
action. If deposits were allowed to be spent, a Sybil
attacker may stake a deposit to send a confirmation-
message but then transfer the deposit to one of the fake
Sybil accounts. This account can then use the money
to stake another deposit and transfer it to yet another
account, resulting in a large number of deposits backed
by nothing at all. We thus require a special withdraw
transaction to unlock a deposit.

3.2 Re-sharding
SupposeN is the total number of miners in the network
and c is a pre-determined honesty threshold such that
as long as the number of honest miners Nh ≥ cN , the
outcome of consensus is trustworthy. Define Pt(Nh ≥
cN) to be the probability that the number of honest
nodes is always greater than cN after the network is
running for a period of time t. The security assumptions
of traditional blockchains depend on the fact that, over
a large time period t, N is sufficiently great such that
Pt(Nh ≥ cN) ≥ 1− p for negligibly small p.
Suppose Ni is the total number of miners in shard i,

and Nh,i is the number of honest miners in the same
shard. It can be seen that Pt(Nh ≥ cN) ≥ Pt(Nh,i ≥
cNi) because Ni is significantly lesser than N . In order
to maintain the same security level, we need to restrict
t′ < t such that Pt′(Nh,i ≥ cNi) ≥ 1− p.
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In order to achieve this, we perform a re-allocation
of miners to shards at intervals of time t′ (for example,
every a few minutes) in order to eliminate the probabil-
ity that any particular shard is compromised. As such,
the threat of compromising a shard is negligible as it its
quite impossible to take control of a super majority of
a shard containing several hundred random nodes in
several minutes and carry out double spending trans-
actions. The most damage an attacker can inflict on
a shard is to prevent it from processing blocks in the
current round. Even then, the damage will be resolved
when the miners are re-sharded.

Verifiable Random Functions (VRF) Our re-sharding
mechanism is based on Verifiable Random Functions
(VRF), a pseudo-random number generator first in-
troduced by Micali, Rabin and Vadhan in [16] and
improved by Dodis and Yampolskiy in [17]. A VRF’s
output can be verified without further communication
with the generator, making the VRF an ideal tool for
random selection. Dfinity [18], Algorand [19], and
Ouroboros Paros [20] all implement VRF as a random
generator as part of their consensus schemes. MultiVAC
adopts the VRF construction [21], where a detailed
analysis of the VRF’s security and pseudo-randomness
is provided.
Let a : N → N ∪ {∗}, b : N → N, and s : N →

N be three polynomial-time functions. A VRF with
input length a(λ), output length b(λ), and security
level s(λ) is a suite of three polynomial-time algorithms
(FGEN , V RF, FV ER) such that

• FGEN is the key generation function, a probabilistic
function which takes in a unary string with length
λ and which outputs a public key PK and private
key SK.

FGEN (1λ) = (PK,SK).

• V RF is the main random number generator, a
deterministic function which receives a private key
SK and a seed x and which outputs two binary
strings: the generated random value δ and the
verification proof π.

V RF (SK, x) = (δ(SK, x), π(SK, x)).

• FV ER is the randomness verification function, a
probabilistic function that verifies the value of δ
based on π and the public information.

FV ER(PK, x, δ, π) = True or False.

A VRF must have the following properties:

1. Correctness: the following two conditions hold
with probability 1− 2−Ω(k):

• Domain Range Correctness: for any x ∈
{0, 1}a(λ), δ(SK, x) ∈ {0, 1}b(λ).

• Complete Provability: for any x ∈ {0, 1}a(λ),
P (FV ER(PK, x, δ, π) = True) > 1− 2−Ω(λ)

if V RF (SK, x) = (δ, π).
2. Unique Provability: For any PK, x, δ1, δ2, π1, π2

with δ1 6= δ2, then

P (FV ER(PK, x, δi, πi) = True) < 2−Ω(λ),

for any i ∈ {1, 2}.
3. Residual Pseudorandomness: Let T = (TE , TJ) be

any pair of algorithms taking 1λ as the input and
taking execution count less than s(λ) steps. Then
for ∗ 6= x, let

T
V RF (SK,∗)
E (1λ, PK) = (x, π̂),

where PK,SK are generated by FGEN .
Now, define a random variable X taking on two
states with equal probability. Depending on the
state of X, a value for δ̂ is determined either ran-
domly or from δ(SK, x):

• P (X : δ̂ = δ(SK, x)) = 0.5;

• P (X : δ̂ →R {0, 1}b(λ)
) = 0.5.

We require that no prediction algorithm TJ is able
to accurately predict within the safety margin s(λ)
the actual state of X that generated δ:

P (T
V RF (SK,∗)
J (1λ, δ̂, π̂) = x) ≤ 0.5 + s(λ)−1.

The Re-sharding Process All miners in MultiVAC re-
ceive block headers produced by all shards. The block
header includes

• the current height of that shard’s in-shard chain h
• the block’s random seed Qr

Miners determine when a shard is re-allocated by
the current height of the in-shard chain. Currently we
set the protocol to re-shard when the in-shard chain
expands every n blocks or when the shard hits a time-
out ts after the shard’s first allocation to, so miners will
trigger a re-shard when either of the below is true:{

h ≡ 0 (mod n),

t = ts + to.

After the commencement of re-sharding, all miners that
have placed a deposit may choose to participate in the
new shard. The deposits are not counted in absolute
token count, but in terms of deposit units, the size of
which adjusts with the shards’ level of overcrowding
as well as the overall system’s security needs.
If the deposit of a miner m is αm token units, the

miner generates a uniform random number prob and
a corresponding verification ver using VRF with their
private key SK and the random seed Qr:

prob, ver = V RF (SK,Qr), 0 ≤ prob < 1.
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Now, given a security level 0 < s′ < 1 (discussed
below), the probability that a miner is allocated into
the shard is s′ is 1−(1−s′)αm , and the miner is selected
if prob < 1−(1−s′)αm . Due to the pseudorandomness
of the VRF, we have

|P (m ∈Mi,r)− (1− (1− s′)αm)|< ε,

for very small ε, equivalent to the statement that under
negligible probability, the following statements hold:

• P (m ∈Mi,r) > P (m′ ∈Mi,r) if αm > αm′ ;
• P (m ∈Mi,r) < P (m′ ∈Mi,r) if αm < αm′ ;
• P (m ∈Mi,r) = P (m ∈Mi′,r) for any i and i′.

That is, miners with the same deposit are equally
likely to be chosen for a shard and miners with higher
deposit have a higher likelihood to be chosen for a
shard.

The Security Level s′ In each shard the security level
s′ is a parameter that affects the number of allocated
miners. A high s′ gives miners a greater likelihood of
allocation into the shard and causes the shard to have
more miners serving it on average. This causes the
shard to be both

• more secure, as it is less likely that an adversary
can corrupt the majority of the shard to cause
denial of service, and

• less efficient, as it is more likely that a greater
amount of communication is required to reach
in-shard consensus.

Security requirements for transactions and for mon-
etary processing are fixed at a very high rate. A default
setting for s′ currently used is

s′ =
1

# all shards

with the same number of expected miners for each
shard. In other applications, it can, however, be feasi-
ble for users to choose a range of s′ levels under which
they wish to run their applications, allowing them to
obtain faster speed for less security-intensive applica-
tions. We call this technique flexible sharding. Flexible
sharding would give users significantly more leverage
in customizing their applications than most blockchains
systems today, where usually speed and security pa-
rameters for all applications are rigidly fixed by the
underlying blockchain infrastructure.

Security Analysis Suppose the number of honest min-
ers in the whole network is Nh = ρN with honesty
ratio ρ, and suppose further that after re-sharding, we
require that Ni,h ≥ cNi for some honesty threshold c.
By the analysis from previous subsections, a miner is
chosen by a shard with probability

p = 1− (1− s′)αm ,

where the security level is s′ and the miner’s deposit is
αm deposit units.
For simplicity, we assume that all the miners place

the same amount of deposit. Let B(n, p) be the bino-
mial distribution with number of trials n and success
probability p, and let N(µ, σ2) be the normal distri-
bution with mean µ and variance σ2. We define two
random variables

• X ∼ B(N−Nh, p) ≈ N(p(N−Nh), (N−Nh)p(1−
p)), the number of malicious miners chosen by the
shard;

• Y ∼ B(Nh, p) ≈ N(pNh, Nhp(1−p)), the number
of honest miners chosen by the shard.

We have that

P (Ni,h ≥ cNi) = P (Y ≥ c(X+Y )) = P ((1−c)Y−cX ≥ 0),

and we define the random variableW = (1− c)Y −
cX. W ≥ 0 corresponds to a situation in which the
number of honest nodes in the shard satisfies the hon-
esty requirement. Because X and Y are independent,
the distribution ofW can be approximated as follows:

W ∼ N(µ, σ2),

where

• µ = (1 − c)pNh − cp(N − Nh) = pNh − cpN =
p(ρ− c)N ,

• σ2 = (1− c)2Nhp(1− p) + c2(N −Nh)p(1− p) =[
(1− c)2ρ+ c2(1− ρ)

]
p(1− p)N.

Let Z be the standard normal distribution N(0, 1).
Then

P (W ≥ 0)

= P (σZ + µ ≥ 0) = P (Z ≤ µ

σ
)

= Φ

(
p(ρ− c)N√

[(1− c)2ρ+ c2(1− ρ)] p(1− p)N

)

= Φ

(
p(ρ− c)√

[(1− c)2ρ+ c2(1− ρ)] p(1− p)

√
N

)

=

∫ p(ρ−c)
√
N√

[(1−c)2ρ+c2(1−ρ)]p(1−p)

−∞

1√
2π
e
x2

2 dx,

and hence,

P (Ni,h ≥ cNi) = P (W ≥ 0)

= 1− P (W < 0)

= 1−
∫ a

−∞

1√
2π
e
x2

2 dx,

where a = p(ρ−c)
√
N√

[(1−c)2ρ+c2(1−ρ)]p(1−p)
.

Assume all the miners place 10 units of deposit, the
security level is s′ = 0.1, the honesty ratio ρ = 0.8,
and the honesty threshold is c = 0.75. Then we can
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compute the probability P (W ≥ 0) in terms of N . The
plot of log(N) against log(1− P (W ≥ 0)) is shown in
Figure 4.
It can be seen that if N ≥ 1500, the probability that

the number of honest miners who are chosen into shard
i is less than the threshold cNi becomes less than 10−10.
For comparison, N = 10424 in Bitcoin and N = 14383
in Ethereum. Thus, the shards would fail to receive an
honest threshold of miners with negligible probability.
Even if attackers are extremely lucky and a shard does
fail to obtain an honest threshold, attackers are still
unable to falsify transactions and can only halt the
production of blocks in the shard until the shard is
re-allocated.

Figure 4: Plot of log(N) against log(1− P (Ni,h ≥ cNi)).
At N = 1500 (where log(N) ≈ 3.17), the
likelihood that less than the threshold of honest
miners is allocated into a shard is 10−10.

3.3 Shard Splitting
MultiVAC dynamically achieves scalability by using
shard-splitting to increase the number of shards. If the
network realizes that a particular shard consistently
faces high transaction flow, the shard is split in two
shards with each half serving half of the original shard’s
accounts.
Suppose the original shard is

Si,r = (Ci,r, (Bi,h), (Hi,h),MTi,r,Mi,r,Ci,r,Si,r),

where 1 ≤ h ≤ r. After splitting, the shard is sepa-
rated into

split(Si,r) = (S2i,r, S2i+1,r),

where

• S2i,r =
(Ci,r, (Bi,h), (Hi,h),MTi,r,M2i,r,C2i,r,Si,r);

• S2i+1,r =
(Ci,r, (Bi,h), (Hi,h),MTi,r,M2i+1,r,C2i+1,r,Si,r);

and
Ci,r = C2i,r t C2i+1,r.

Shard splitting does not affect the in-shard consen-
sus, the shard’s blocks, block headers, Merkle Trees

or storage nodes. In particular, storage nodes are re-
quired to work for both newly created shards for a
short period to guarantee a smooth transition. Inside
the storage node, the blockchain of the shard fork is
able to serve both shards while avoiding duplicated
storage. Provided that each new shard has enough
storage nodes, storage nodes are allowed after a cer-
tain period to stop supporting one of the shards so as
to not overburden them by serving multiple shards.
After shard splitting, miners M2i,r and M2i+1,r are

re-allocated to both shards using re-sharding. Since
accounts are assigned to shards based on their address,
the original shard addresses will starte with 00. Af-
ter splitting, the new shard will be responsible for ad-
dresses starting with 000 and 001 respectively. This is
depicted in Figure 5.

Figure 5: Account Address-Based Shard-Splitting

3.4 In-Shard Consensus

In MultiVAC’s definition of a shard

Si,r = (Ci,r, (Bi,h), (Hi,h),MTi,r,Mi,r,Ci,r,Si,r),

with 1 ≤ h ≤ r, the consensus algorithm Ci,r is re-
placeable from shard to shard. Theoretically, any shard
could run any consensus algorithm, including PoW, al-
though this would not be practical. MultiVAC instead
runs consensus algorithms from the Byzantine consen-
sus family, which assume a quorum of 2/3 honest nodes
to operate. Byzantine consensus algorithms have full
finality, meaning every shard’s blockchain is unique
and cannot be forked. Examples of Byzantine consen-
sus algorithms are pBFT [22], Tendermint [23], and
BA* [19]. Research and development is underway to
explore the Byzantine Consensus Algorithm(s) most
suited to our speed and flexibility requirements.
Once allocated to a shard, miners are delegated via

VRF to tasks comprising of block generation and con-
sensus. The benefit of using a VRF is that not all min-
ers need to participate in every consensus task, sig-
nificantly reducing network traffic and speeding up
consensus. It is precisely because the randomness used
to assign miners cannot be manipulated and is verifi-
able, a high level of security is reached even without
all miners participating in every step.
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The in-shard miner selection process for consensus
is as follows. We call the length of time between block
verifications as blocktime. Every blocktime is broken up
into a number of tasks, which are usually voting pro-
cedures which depend on the specific algorithm used.
Suppose the current blocktime is r and the current
task number is t. There exists a random seed Qr−1 in
the block header of the previous blocktime, and each
miner in the shard generates a random number with
their private key

h = V RF (SK, hash(Qr−1, r, t)).

A miner is selected as a voter if h is less than a
predetermined threshold pr,s.
An important difference exists between the above

algorithm and the VRF used in shard-selection, namely,
in the above algorithm, miners are not weighted. In
other words, so long as a miner is allocated into a
shard, he or she has an equal say in the vote, making it
impossible for miners with high stake deposits to also
dominate a shard with high voting power.
The first task for every blocktime is block proposal.

At the beginning of the consensus, each miner selected
for the block proposal task constructs a new block Bu
and broadcasts the proposed block to the whole shard.
In the block proposal task, the random number h gen-
erated during miner selection doubles as that miner’s
priority value, thus producing a total order over prior-
ity values for proposed blocks. Receivers of potential
blocks cache all blocks and proceed to future tasks
based on the priorities of the blocks.

4 MultiVAC Storage and Transmis-
sion Sharding

In this section we describe MultiVAC’s sharded storage
and transmission solution.
MultiVAC performs full sharding over the blockchain

network, meaning that we not only split up the net-
work computational load amongst miners but also di-
vide up network storage amongst nodes. We design
this in such a way that miners need only communicate
with other miners in the same shard to obtain or com-
mit a transaction, significantly reducing transmission
costs and realizing sharded transmission. MultiVAC
is the first major blockchain to create a fully-sharded,
three-pronged computation, storage, and transmission
solution, essential to scale blockchains to industrial
capacity.
Indeed, storage load is a major concern on modern

blockchains. A blockchain achieving high TPS (transac-
tions per second) also creates a high storage load. If a
blockchain achieves 2,000 TPS with a transaction size
of 400 bytes, the monthly storage pressure is 1,931GB.
It thus becomes impractical for a common node to store
all the blocks. MultiVAC solves this issue through stor-
age sharding. In MultiVAC, there is a division of labor

between miner nodes and storage nodes. Miner nodes
are responsible for generating blocks and have voting
rights in the system, whereas storage nodes are solely
responsible for storing and serving data and act as
service providers to the network. MultiVAC inclines to-
wards reducing the local computational load on miners
as much as possible so that many ordinary computers
can join the mining network, allowing decision-making
power to remain with ordinary users and promoting
the network’s health and efficiency.
Our storage solution has the following features:
No full ledger in miner nodes. Suppose we have

a blockchain with a Visa-average throughput of 2000
tps. If miners stored the full ledger, this would amount
to 23T of data a year linearly increasing over time, a
large amount for ordinary computers. MultiVAC has
most of the data held by storage nodes so that miners
need only hold less than 1G of data at any time.
In-shard gossip protocol. In traditional

blockchains like Bitcoin, messages are broad-
cast via gossip protocol to all the users in the network.
In MultiVAC we implement a gossip protocol that
makes it possible to broadcast a message only to all
users within particular shards, allowing nodes to only
receive messages in which they are interested.
Verifiable and trustworthy service by storage

nodes. Though most of the data in MultiVAC is stored
by storage nodes to which miners send requests, the
miners must also store enough information to verify
that the data returned is accurate. The MultiVAC pro-
tocol is designed in such a way that all the information
provided by storage nodes is verifiable by the miner
and all unverified messages are discarded.
No extra network transmission for miners. To

perform verification, miner nodes need to locally store
the Merkle root of the main Merkle tree. In Multi-
VAC’s design, the miners are capable of updating the
Merkle root with only newly generated blocks, thus up-
dating the main Merkle root without additional trans-
mission pressure to the storage node, giving miners
necessary information for in-shard block generation
and re-sharding.

4.1 Storage Methodology
A Merkle Tree of Transaction Outputs MultiVAC’s
storage nodes store transaction output states in a
Merkle Tree data structure. These are packaged into
blocks, which contain outputs in a Merkle tree called
the block Merkle tree. Block Merkle trees are com-
piled together into a large Merkle tree, the main
Merkle tree, where all historical outputs are stored.
Each storage node is responsible for maintaining the
section of the main Merkle tree that contains the out-
puts covered by his shard, determined based on the
receiver’s account id. Merkle trees provide an efficient
storage and communication solution to store transac-
tion outputs and to allow other nodes to verify outputs
by tracing Merkle Paths.
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(a) The Full Main Merkle Tree (b) The Pruned Main Merkle Tree Stored by the Storage Nodes

Figure 6: A depiction of the Main Merkle Tree stored in storage nodes, where red nodes are outputs to shard 1; blue nodes are
outputs to shard 2; and orange nodes are intermediate nodes in the Merkle tree. Figure (a) is the complete Merkle Tree;
and Figure (b) is the main Merkle tree maintained by shard 1’s storage nodes. Outputs that shard 1 are not responsible
for are pruned along with unnecessary intermediate nodes.

Division of Storage Labor In MultiVAC, miners are
required to keep track of

• All block headers;
• Roots of all shards’ main Merkle trees;
• Merkle Paths as required to perform updates to

the Merkle Roots of all shards.

Storage nodes are required to be aware of all blocks,
comprising all historical transactions. However, they
only maintain and update transaction outputs whose
accounts are in the shard they are responsible for. For
this reason, storage nodes of different shards will have
different main Merkle Trees because storage nodes are
only responsible for updating the state of transactions
in their shard. Once the state is updated, the block
hash changes and is propagated up to the Merkle root,
resulting in each storage node having recorded the
same transactions but updating only the transactions
that it is responsible for serving up. Storage nodes
may then optionally choose to prune the records of
transactions that it is not responsible for.

The Block Merkle Tree Every newly confirmed block
contains a group of newly confirmed transactions,
stored in a Merkle tree data structure called the block
Merkle tree. The outputs of these transactions need
to be recorded because they may be used as inputs to
future transactions. For every block that goes through
consensus, the miner that proposed it constructs the
blockMerkle tree and adds its Merkle root to the block’s
header. Inside of the block Merkle tree, each output
is marked with a 0/1 state marking whether or not
the output is spent. These outputs are sorted by the
recipient’s address and the transaction’s hash such that
transactions within the same shard are adjacent. Be-
cause of this strict ordering, the block Merkle tree can
be deterministically generated given a list of transac-
tions. The idea is summarized in Figure 7.

The Main Merkle Tree Storage nodes store all histor-
ical outputs in a Merkle tree called its main Merkle
tree. The main Merkle tree consists of two parts, the

Figure 7: A Block Merkle Tree. New outputs are labelled Outs
1-4. hi = hash(Outs i, 0) for i = 1, 2, 3, 4, and
h5, h6 and h7 are calculated from their child
hashes.

top main Merkle tree and constituent block Merkle
trees, such that the leaves of the top main Merkle tree
are the roots of the block Merkle trees. Storage nodes
append new block Merkle trees to the top main Merkle
tree when new blocks are added. We illustrate this
structure in Figure 6(a), assuming only two shards for
simplicity.
Recall that an output consists of a value and a re-

ceiver’s address. Storage nodes in Shard 1 are only
interested in output addresses that are also in Shard
1. To improve storage efficiency the storage node is
allowed to discard sub-trees containing transactions
outputted to other shards so long as it still maintains
those outputs’ Merkle roots. This still allows the node
to have access to every output that it is responsible for.
This is illustrated in Figure 6(b).

When clients propose transactions, storage nodes for-
ward to miners the Merkle paths of inputs to be spent,
which are all outputs of previously confirmed transac-
tions in a particular user’s account. Miners maintain
their own copy of the shard’s Merkle root and verify
the veracity of the forwarded transaction by checking
its Merkle root against their local copy. Afterwards,
miners follow the Merkle path and check whether or
not the input has already been spent. If a malicious
storage node provides false information to the miners,
miners will reject the false information upon receiving
a Merkle root that is different from their local copies.
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(a) Original main Merkle tree (b) New main Merkle tree

Figure 8: Here, we depict the effect of appending a block Merkle Tree to a main Merkle Tree which is not full. Figure (a) is the
original main Merkle tree, which becomes Figure (b) after appending a the block Merkle tree.

Thus, the only harm that a malicious storage node can
do is to refuse to provide services, but since storage
nodes are greatly duplicated to provide reliability of
service, miners can always easily switch to another
storage node.

4.2 The Block Confirmation Message

Miners need to keep track of the Merkle roots of all
shards. Thus, miners need to be notified when new
blocks in other shards are confirmed so as to update
their local versions of that shard’s Merkle root. This,
however, is not sufficient information to perform the
update; miners also need a way to prove that the infor-
mation about the consensus transmitted to it is true.
MultiVAC achieves this by broadcasting the votes of the
final consensus task along with the newly confirmed
block. Upon completion of the final consensus task, the
miner generates a confirmation message containing all
of the votes together with block header and broadcasts
this message to the whole network. This message is
called the block confirmation message. This confir-
mation message contains sufficient information for any
miner to verify that the shard has indeed reached con-
sensus, and the miner will update its own Merkle root
with the obtained block header.
Negligible forgery risk. The possibility of forging

a confirmation message by a malicious user is negligi-
ble, since votes included in the message must contain
signatures and credentials from voting miners. A mali-
cious user has to corrupt a majority of voting miners in
the shard in order to create an artificial confirmation
message.
Minimizing unnecessary network transmissions.

A significant communication cost is incurred if all min-
ers broadcast a confirmation message to the entire
network. In MultiVAC’s protocol miners only gossip
one confirmation message and discard other messages
if they have already gossiped.

4.3 Miners Update Requirements

We give a survey of miners’ update requirements to
maintain the block ledger.

Recall that miners store not only all block headers
but also the Merkle root from all shards and some
Merkle paths from all shards as required for bookkeep-
ing. When a miner is a block proposer, he is responsi-
ble for producing a block whose header contains two
Merkle roots: the root of the attached block Merkle
tree and the shard’s new main Merkle root upon ad-
dition of the block. Miners must update state changes
from newly spent transactions when calculating the
new main Merkle root. In addition, Merkle roots of
blocks received from other shards must be appended to
miners’ local versions of that shard’s Merkle root and
Merkle paths in order to stay consistent with the other
shards. Finally, the miner’s pending transaction pool
consists of Merkle paths generated according to the
current Merkle tree. After a new block is confirmed,
these Merkle paths need to be updated in order for the
system to stay consistent. These comprise a miner’s
update tasks in MultiVAC.
MultiVAC designs a process allowing miners to up-

date their local state without knowledge of the whole
Merkle tree. To do this, the miner requires the follow-
ing information:

• The Merkle paths of all inputs spent in a miner’s
newly generated block.

• All roots of block Merkle trees included in block
headers received from other shards since the
miner’s last update.

• The right-most Merkle path of each shard’s top
main Merkle tree, that is, the Merkle path marking
the locations where new blocks should be added in
each shard. These provided by the shard’s storage
node when the miner first joins the shard.

We present in more detail the different update tasks
that a miner is required to perform below.

Updating Merkle Roots for a Newly Spent Transaction
First, a block proposingminermust take all transactions
involved in the block and accordingly update all their
input states. This requires obtaining the hash value
of a Merkle path at index i, a process summarized in
Pseudocode 1.
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(a) Original main Merkle tree (b) New main Merkle tree

Figure 9: Here, we depict the effect of appending a block Merkle Tree to a full main Merkle Tree. Figure (a) is the original main
Merkle tree, which becomes Figure (b) after appending a the block Merkle tree.

Pseudocode 1: getHash

INPUT:
Pt = ((H0, S0), (H1, S1), . . . , (Hn, Sn)): Merkle

path of a transaction t
i: The location of the required hash

OUTPUT:
H : A hash value in the merkle path
S ∈ {L,R}: The side of the hash value

PROCEDURE:
H ←Hi

S← Si

The miner needs to change the states of spent inputs
from 0 to 1 and calculate the new resultant Merkle root.
It may update the Merkle root without knowledge of
the entire Merkle tree as the miners will be provided
with the corresponding Merkle paths for each input
is changed. In Pseudocode 2 we provide the logic of
updating the main Merkle root if only one input was
changed. The procedure for updating the Merkle root if
more than one input was changed can be easily derived.

Pseudocode 2: updateRoot

INPUT:
t: Transaction
Pt: Merkle path of the transaction t

OUTPUT:
R: New Merkle Root

PROCEDURE:
R← hash(input, 1)
for i in Pt; do

H , S← getHash(Pt, i)
if S = L; do

R← hash(H , R)
else; do

R← hash(R,H )
Output R

Incorporating Merkle Roots from New Blocks of Other
Shards The miner has received a number of new
blocks from other shards since its last update. When a
miner is responsible for creating the next main Merkle
root (i.e. the miner is one of the block proposer),
he is responsible for including these blocks into the
main Merkle tree so as to remain consistent with other

shards. This is performed by appending the new blocks
to the main Merkle tree before computing the Merkle
root.
For all the pending blocks from shard i with height

hi, the miner sorted them as (i, hi) lexicographically
and append the blocks onto the main Merkle tree in
such order. New heights of each shards will be recorded
in the block and broadcasted within the shard. It is
worth mentioning that the new height of each shard
is greater than or equal to the height of the previous
round, which is equal if the miner has not received a
new block from that shard.
Different block proposers may see different pending

blocks due to network asynchronization and thus gener-
ate different main Merkle root and different heights for
other shards. However, only one of the newMerkle root
will be confirmed by the consensus algorithm. Given
that the main Merkle tree is completely determined by
the new heights of the other shards, it gives sufficient
information for other miners to confirm the compu-
tation of new main Merkle root and storage nodes to
update the main Merkle tree.
We design a mechanism such that miners need only

store the block merkle roots instead of the entire blocks
in order to perform this operation. This solves a com-
mon problem in sharding solutions: as the network
expands, cross-shard communication requirements be-
come burdensome and hamper scalability. Our solution
realizes transmission sharding by keeping the amount
of cross-shard communication low, so that the trans-
mission volume required for a single shard is close to
fixed no matter how much the network expands. To do
this, miners are required to maintain each shard’s main
Merkle Tree’s rightmost Merkle path through which
new blocks are added.
There are two cases for adding a new block. In

MultiVAC, new block Merkle trees are always appended
to the right-most branch of the main Merkle tree. If the
Merkle tree is incomplete, the miner simply appends
the new block Merkle tree to the next available node.
This scenario is represented in Figure 8. Alternatively,
if the main Merkle tree is already complete, the miner
can increase the tree height by one and append the
block. The second scenario is presented in Figure 9.
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(a) Full Merkle Tree of Output Messages (b) Pruned Merkle Tree of Output Messages

Figure 10: In the figures above, red circles are outputs to shard 1, black circles are outputs to shard 2, and pink circles are outputs
to shard 3. Suppose we have a storage node for shard 2 that is only interested in outputs to shard 2 only. Figure (a) is
the full Merkle tree of output messages that the storage node receives, with the left-most path for shard 2 denoted by
the blue nodes and the right-most path for shard 2 denoted by the red nodes. Figure (b) is the resulting Merkle Tree of
output messages that shard 2 stores after pruning the outputs to other shards based on the left-most and right-most
paths.

These updates are made possible because the miner
keeps track of each shard’s right-most Merkle paths.
This allows the miner responsible for proposing the
next main Merkle root in its shard to also incorporate
new blocks from the other shards.

Updating Internal Storage After In-Shard Block Con-
firmation Miners who receive a new confirmed block
in their shard is able to update their main Merkle root
and rightmost Merkle path with the information con-
tained in the new block. In addition, they must update
the Merkle paths of the pending transactions in their
pending transaction pools, as they will have changed
upon the update of the Merkle root. The logic for doing
so is presented in Pseudocode 3:

Pseudocode 3: updatePath

INPUT:
P old
t : Merkle path of pending transaction

P: Merkle path of a confirmed transaction
O: An output

OUTPUT:
Pnew
t : New Merkle path of the pending

transaction
PROCEDURE:

Hold ← hash(O, 0)
Hnew ← hash(O, 1)

if Hold in P old
t ; do

Pnew
t ← replace Hold by Hnew in P old

t

for i in P; do
Htmp, Stmp ← getHash(P, i)
if Stmp = L; do

Hold ← hash(Htmp,Hold)
Hnew ← hash(Htmp,Hnew)

else; do
Hold ← hash(Hold,Htmp)
Hnew ← hash(Hnew,Htmp)

if Hold in P old
t ; do

Pnew
t ← replace Hold by Hnew in P old

t

Output Pnew
t

4.4 Storage Node Update Requirements

We now give a survey of storage nodes’ update require-
ments to maintain the states of their assigned shards.
Recall that storage nodes are required to maintain

the states of all historical transactions sent to accounts
in their shard. Since these transactions may have been
generated by any shard, storage nodes have differ-
ent procedures for updating in-shard and out-of-shard
blocks.
When new blocks are confirmed in any shard, the

miner that produced them creates and transmits an
output message directed to all shards that must receive
its outputs. Storage node listen to output messages
from other shards in order to learn about new con-
firmed blocks and receive the outputs that they are
responsible for. When a storage node receives a new
block in its own shard, it processes all output messages
and adds partial block Merkle trees holding the out-
puts from other shards to its main Merkle tree. It then
finally appends the new block Merkle tree from its own
shard to its main Merkle tree.
We give descriptions of these processes below.

The Output Message An output message from shard
i to shard j is produced and sent every time a new
block is produced in shard i that has outputs in shard
j. The message consists of:

• The total number of outputs in the block;
• The content, index and Merkle path of the output

prior (left of) the outputs to shard j;
• The content, index and Merkle path of the output

subsequent to (right of) outputs to shard j;
• The list of outputs from shard i to shard j.

Output messages indicate to a storage node of shard
j that a new block has been confirmed in shard i. With
the list of outputs from shard i to shard j as well as the
left and right Merkle paths, shard j is able to recon-
struct the section of the block’s Merkle Tree containing
only the outputs to shard j.

Page 14 of 17



MultiVAC Sharding Yellowpaper
The All-Dimensional Sharded Blockchain

Updating Out-of-Shard Confirmed Blocks When a
storage node for shard j receives an output message
from another shard i, it buffers the corresponding out-
put message and does not immediately update its main
Merkle tree.
The storage node only processes all output messages

when a new block is confirmed in shard j, as described
in the section below. When it does so, for each output
message from i to j it constructs a partial block Merkle
tree with the sameMerkle root as shard i’s block Merkle
tree but only containing the outputs associated with
shard j. The partial block Merkle tree is represented
in Figure 10.

Updating In-Shard Confirmed Blocks New con-
firmed blocks in a storage node’s shard contain the
shard’s new main Merkle root and information incorpo-
rating the other shards’ blockchain heights determined
by the block proposer.
After a new in-shard block is received, the current

heights of other shards hi are included. The storage
node processes all buffered output messages from other
shards at once, up to the height of the corresponding
shard hi, and reconstructs their partial block Merkle
trees, appending each partial Merkle tree to the right
end of its own main Merkle tree in lexicographic order.
It then appends the block Merkle tree of the new block
from its shard to its main Merkle tree.
Upon receiving a confirmed block in its own shard,

the storage node updates its mainMerkle tree, ensuring
that the resultant Merkle root is the same as the one
as included in the block’s header. Since the network is
asynchronous, it is possible that a storage node may be
missing blocks from other shards during this process.
Under those circumstances, the storage node requests
the missing block and confirmation message directly
from the corresponding shard after a short time delay
of 5 seconds.
These sum up a storage node’s update requirements

to keep their respective shards up to date.

4.5 Storage and Transmission Summary

Here, we summarize our storage and transmission solu-
tion. MultiVAC realizes storage and transmission shard-
ing by utilizing a division of labor between miners and
storage nodes. Miners are responsible for achieving
consensus on blocks and processing transactions and
storage nodes are responsible for storing all historical
data and serving up transactions. To perform secure
and verifiable information sharing, miners must store
all block headers, the roots of the main Merkle trees
in all shards, as well as the right-most Merkle paths
of all shards. This allows them to keep summaries of
the blockchain state in all shards and process transac-
tions consistent with such summaries, while keeping
their hardware storage requirements at an incredibly
low level. Storage nodes serve particular shards and

store the blockchain’s state of the shard allowing for
duplication and availability. The design of this storage
solution allows the vast majority of communications
in the blockchain to be conducted within the shard,
which we call transmission sharding. We further de-
sign mechanisms to relieve the network pressure on
any parts of the network at any point in time, allowing
for extremely fast and scalable protocol operation.

5 Summary
Traditional blockchain systems suffer from scalability
issues that hamper their usability in the real-world con-
text. Among the various architectures proposed to scale
blockchains, the most promising thus far is, blockchain
sharding, which still carries inherent limitations. Cur-
rent sharding solutions have produced progress in par-
allelizing processing but are still limited in speeding
up other aspects of computation, namely transmission
and storage. To design a blockchain that is able to
serve the real economy, MultiVAC is the world’s first
architecture that designs sharding for all aspects of
blockchain computation: processing, transmission and
storage.
MultiVAC uses Verifiable Random Functions to dy-

namically parallelize the network of miners into net-
work fragments called shards. Miners are re-allocated
into shards in an equitable and publicly verifiable way
that is also safe against Sybil attacks. MultiVAC’s el-
egant engineering solution involves a division of la-
bor that realizes sharded transmission and storage
through, ensuring that no part of the computational
process is limited by a single bottleneck and that ordi-
nary miners always have decision-making power in the
blockchain. MultiVAC’s architecture allows for linearly
scalable throughput while staying close to blockchain’s
core values of decentralization and security. With our
elegant all-dimensional shard architecture, MultiVAC
is the world’s first blockchain able to practically and
robustly handle industrial-level demand.
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Appendix 1: Proof of Work and
Proof of Stake

Proof of Work and Proof of Stake are the two
best competing systems for achieving consensus
in blockchains. Bitcoin famously uses the Proof of
Work algorithm popularized by Satoshi Nakamoto,
requiring miners to solve random computational
puzzles requiring on average fixed amounts of time
before they can contribute to consensus. PoW se-
cures the network but requires the nonstop opera-
tion of tens of thousands of computations equiv-
alent to continuously guessing random numbers.
This requirement is extremely energy-inefficient
and wasteful, causing the Bitcoin network to con-
sume as much electricity as the entire country of
Ireland in 2017. [24] Because of this huge expen-
diture of computational power, Proof of Work is
not able to scale to the level that MultiVAC desires.

In reality, the purpose of the Proof of Work algo-
rithm is not in itself able to produce consensus,
and neither is its use essential to doing so. The
function of Proof of Work is to certify identities,
thus protecting the network against Sybil attacks
or fake-identity attacks, when malicious actors
pass off as multiple users so as to overwhelm the
network. If node selection for bookkeeping is sim-
ply randomly chosen based on accounts, malicious
users can easily simulate thousands of accounts
in a virtual machine and overwhelm the network.
PoW forces miners to provide proof of a costly lim-
ited resource, namely computational power, before
being eligible to engaging in consensus, rendering
it basically useless to create fake identities in ex-
change for mining power. In this sense the use of
Proof of Work in Bitcoin is similar to earlier uses
of Proof of Work in HashCash to certify an email
against spam [25].

PoW provides one other important functionality:
verifiable randomness. It both establishes identities
and also selects miners in a random fashion whose
fairness can be validated by all the other miners.
When a Bitcoin miner succeeds in landing a PoW
solution, what he or she performs is both a proof
of his or her identity though the expenditure of
computational power and also a proof of winning
the node selection lottery by providing the random
puzzle solution. This mechanism is based on the
assumption that it very hard for dishonest users
to own a controlling stake in the majority of the
network’s processing power, which is required to
solve the computational puzzles.

For this reason, MultiVAC uses a Proof of Stake
(PoS) selection system which avoids PoW’s waste-
ful energy requirements but ensures an equal level
of security. An alternative to Proof of Work, PoS
is a system where where miners are randomly se-

lected according to their amount of money (stake)
in the system. As it is very hard to accumulate a
controlling stake of the money in a network, pro-
viding proof of ownership of a certain amount of
money also performs the same function of iden-
tity establishment as Proof of Work. In MultiVAC,
we prove miners’ identity by forcing them to lock
up a stake deposit before they are able to start
mining and earn mining rewards. Proof of Stake
is secure because money ownership is required to
be selected for bookkeeping, and it is very hard
for dishonest users to own a controlling stake in
the total amount of money in the network. After
Proof of Stake identities are established, we use
the mechanism of VRF to select bookkeepers in
a random and verifiable way, fulfilling both func-
tions of Proof of Work.
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